Funciones inyectivas
Sea f una función definida de A a B
f: A → B, x,y∈ A
∀x ∀ y (f(x)= f (y) → x = y)
f es 1-1 o Inyectiva si sus pre imágenes son únicas, es decir Si x ≠ y entonces f(x) ≠ f(y)
Una función f entre los conjuntos A y B se dice que es inyectiva, cuando cada elemento de la imagen de f lo es, a lo sumo, de un elemento de A. Suele decirse también que la función es uno-a-uno. Dicho de otra forma:
f :A −→ B es inyectiva ⇐⇒ ∀a1, a2 ∈ A [a1 =6 a2 =⇒ f(a1) =6 f(a2)]
La “mejor forma” de probar en la practica la inyectividad de una función es utilizar la contra reciproca,
es decir,
f :A −→ B es inyectiva ⇐⇒ ∀a1, a2 ∈ A [f(a1) = f(a2) =⇒ a1 = a2]}

En la figura anterior f es inyectiva y g no lo es.